I will get a Raspberrry Pi soon so I wanted to see what can bt done with it beside using it as a server, so I found that you could use a Pi and its GPIOs to directly control the stepper drivers, fan, heater and other aspect of a 3d printer without any additional processing electronics. So, entire 3d printer is controlled by a single Raspberry Pi only.

First project I found was the one by  Owen Jeffreys who actually calls it "The World's First Raspberry PI 3D Printer" and it was reported on many 3d printing blogs.





Owen's project description:
This video briefly outlines the building and testing of a unique, home-built, 3D printer which uses a Raspberry PI as its "brain" or CPU.
If you Google (or Bing!) Raspberry PI 3D printer you will find several people who claim to have made "Raspberry PI *Powered* 3D Printers", but if you examine them in detail, they are not actually *powered* by the Raspberry PI at all. These people use the standard firmware which comes with the 3D printer and replace the PC interface with the Raspberry PI - hence the PI is not controlling/powering the printer at all, but simply sending buffered GCODE commands to the pre-built printer and acting as a neat user interface to display print progress etc. This unique 3D printer is not like those; the PI actually controls every part of the machine including, but limited to the motors, heaters and temperature sensors. The 800MHz PI runs the time-critical (virtually real-time), dedicated program with great ease making it possible for a 3-dimensional, plastic (ABS or PLA) model to be printed layer by layer.
This 3D printer was designed and built as an individual, level 3, engineering project, chosen by me as I owned a PI and wanted to do something useful and unique with it which would help people who dismiss the PI to realise that it is capable of a lot more than they could possible imagine. It was a very challenging task covering a whole range of engineering fields. Almost every part of the 3D printer was made from scratch, including, but not limited to, the circuit board, the aluminium framework, the drive system and the C++ program to run on the PI.
The PI can be hooked up to a HDTV or laptop to display the print progress and other useful information, or it can run completely stand-alone. The 3D printer runs at around ¼ speed compared to a typical, hobby 3D printer (e.g. RapMan, Cube or Touch), taking around 25 hours to print a 60mm high chess piece – the speed only limited by the stepper motor choice and gearing.
It took approximately eight months to complete and would not have been possible without the help from family, friends, teachers and instructors. In particular, the help from an exceptional teacher and project supervisor, Laurence Hyett, was invaluable and very much appreciated. Although this 3D printer works, the project is not entirely complete - there is still room for improvement. One such improvement which is underway is to modify the interface board used to connect the PI to the 3D printer from a hand-etched, double-sided PCB to a compact “shield” which will stack neatly on top of any PI. Faster print speeds and a twin print head are also being considered.
Any common 3D CAD package can be used to create a 3D model which can be sent to the PI to be printed, alternatively a 3D model from a collection of many thousands can be downloaded from Thingiverse for free. The test piece in this video was designed by me using a professional 3D modelling package widely used in the CG film world, but there are a number of cheap or even free packages which are just as good. I'd personally recommend "Blender" for those that are interested, as it is a completely free, open source, community contributed project which is unbelievingly powerful
Owen has not yet released any code with his project.
In response to this claim, Colin aka. "Wallacoloo" commented that there are probably three projects developed earlier and one of them is his called the Printipi.

Printipi is well documented on GitHub with all the code available:

https://github.com/Wallacoloo/printipi

Printipi project description:
Printipi is a software package designed to bring 3d printing to the Raspberry Pi. It takes on all of the roles generally given to dedicated microcontrollers (interfacing with stepper drivers, temperature control of the hotend, and cooling fans) while also running under an operating system. This means that the same device that is running the firmware can also perform other tasks while printing, such as hosting a web interface like Octoprint.
Although called Printipi, it is not necessarily limited to running on the Pi. The Example machine can compile and run on most Linux machines, as a proof of concept (it does no electrical I/O), and new machines can be supported by implementing a handful of interfaces (see the section below for more info). 
Printipi also aims to support a multitude of printers including typical cartesian printers, delta-style printers like the Kossel, or polar-based printers - without the messy use of hundreds of #defines, some of which may not even be applicable to your printer. Instead, each machine type gets its own file and C++ class under src/drivers/machines that exposes its coordinate system and peripherals through a handful of public member functions and typedefs. In this way it is possible to add support for a new type of printer without digging into the guts of Printipi.




Third project is piPrint by Ian D. Miller and Kenan Bitikofer

piPrint is well documented on GitHub with all the code available, but it is under heavy developemnt:
https://github.com/iandouglas96/piPrint





and fourth project is by Dado Sebo but no further information is available:



Using Pi is not an optimal solution but it is interesting project, there will probably bi more developments in the future.











Donate

Categories

diy VRAY VISOPT new diy 3d printer SKETCHUP MODELS HOUSES - VILLAS how to SKETCHUP MODEL LIVING ROOM low cost software open source arduino electronics instructables cnc SKETCHUP MODEL BEDROOM 3d printed robot europe guide VRAY PROXY kickstarter SHOP fff tutorial SKETCHUP MODEL DINING ROOM SKETCHUP MODELS CHAIR & EASY CHAIR education 3d printed toys fun hack resin robot sound space 3d printed weapons CHALLENGE SKETCHUP MODEL KITCHEN art home manufacturing large printer music open source 3d printer pop culture reprap ultimaker wearable 3d model 3d printed buildings 3d printing materials SKECHUP MODELS TABLE SKETCHUP MODEL BATHROOM delta 3d printer humor tips 3d printed music instrument 3d printing filament 3d systems VRAY TUTORIAL BASIC car cnc mill comic design eyewear heated build platform multi color multitool nylon paper print bed sla stratasys upgrade 3d printing in cement 3d scanner Switzerland adafruit australia cad controller cool things to 3d print extruder germany indiegogo large models medical applications of 3d printing mold repair review syringe video 2016 CES HDRI NASA OpenSCAD SKETCHUP MODELS FURNISHING ACCESSORIES SKETCHUP MODELS OFFICE FURNITURE TEXTURE aircraft android concrete dlp drone family filament extruder food formlabs furniture game google glass house household items hybrid i3 india keyboard laser optics pellet prosthetic prototype prusa raspberry pi science sls stereolithography tool uv 3d printing waste water web app 3d printer crime 3d printing on battery power BACKGROUNDS Future NEWSLETTER VISMAT VRAY SKETCHUP aluminum animal app aquaponics bluetooth camera casting ceramic clay desktop production disney diy science ecology energy generation engraver eye glasses fantasy figure hydroponics italy jet engine mcor metal 3d printing ninjaflex pcb milling pet pets pick and place plant plastic welding plywood polishing problemsolving rail recycling replacement part satellite school sf smoothing speakers sweden test 2014 3d printed airplane 3d printed car part 3d printed food 3d printed gun 3d printed uav 3d printer review 4d printing 5 axis Autodesk CUT OUT PEOPLE MIT Marlin Netherlands PS TUTORIAL SKETCHUP 3D MODEL VEGETATION Spain UK USA abs archery asia automation bed leveling bicycle biohacking bottle calibration chocolate composite control unit copyright creative commons dc motor digital fabrication disabled dremel enclosure fdm filament fire foldable form 1 garden ge history hype industrial injection molding insects jewelry laser cutter laser cutting law lens linux mach3 metal casting military modular multi materials open source hardware outdoor pen play-doh polyurethane problem repstrap router sand scara seemecnc selective laser sintering servo shapeways slicer solder speed support material thingiverse toy tv ultrasonic v-slot visualization weapon web web interface welding wifi windows wireless 3d printing wood wood frame 3d printer 2d to 3d 3d copy 3d drawing pen 3d print platform 3d print quality 3d printed sensors 3d printed vehicles 3d printer desk 3d printer stand 3d printer table 3d printing 3d printing wood 3d printshow 3d startup 6 axis Czech Republic ESA France GRAPHIC DESIGN ELEMENTS Intel Galileo Korea MDF Objet PETG Printrbot SKETCHUP 3D LIQUID SKETCHUP MODEL BABY - GUYS FURNITURE SKETCHUP MODEL LOFT & APARTMENT SKETCHUP TUTORIAL Shapeoko Singapore Slovenia TED VR VRAY TUTORIAL EXTERIOR VRAY TUTORIAL INTERIOR abs juice acetone acrylic africa air airwolf3d all-in-one apple armour arrow automotive batteries bedroom bioprinter blacksmith blender blind bronze brook drumm business buying home cardboard ccc cell cerberus children china closed loop cloud cody wilson community company tour cooling cosplay cubesat customized daily use data delta demonstration denmark drill dual extruder e3d economy environment etching fashion filabot filaflex firmware flexible ford friction welding fumes gartner gears general glass glue google graphene harvard hdpe heat chamber hungary ikea industrial 3d printer intellectual property ip rights japan k8200 kai parthy kinect laser sintering lcd led lego leveling library linear actuator liquid london lost pla casting lulzbot magnets make makerfarm prusa making money with 3d printing manufacturing map market metal filament metal hot end mexico microscope microsoft mix mobile 3d print control mobile factory model quality modification molecule moon nanoparticles nature news nfc ordsolutions parametric paste patent pcb photography plasma cutter plotter poland polyjet portable 3d printer portugal powder 3d printing presentation printhead process prosumer pump pvc pipes quadcopter reddit repetier replicator reprappro retro rings robo 3d rocket rostock max rubber rubber band russia sea security self assembly setup sharing slic3r smartphone solar south africa spaceX star trek steel stepper students surface tablet taiwan ted talks temperature testing textile titanium type a machines uav ultimaker 2 university usb user interface velleman virus wanhao wasp wasp 3d printer watch wind generator wire workspace xyzprinting

Donate

Popular Posts

Blog Archive

Labels

diy VRAY VISOPT new diy 3d printer SKETCHUP MODELS HOUSES - VILLAS how to SKETCHUP MODEL LIVING ROOM low cost software open source arduino electronics instructables cnc SKETCHUP MODEL BEDROOM 3d printed robot europe guide VRAY PROXY kickstarter SHOP fff tutorial SKETCHUP MODEL DINING ROOM SKETCHUP MODELS CHAIR & EASY CHAIR education 3d printed toys fun hack resin robot sound space 3d printed weapons CHALLENGE SKETCHUP MODEL KITCHEN art home manufacturing large printer music open source 3d printer pop culture reprap ultimaker wearable 3d model 3d printed buildings 3d printing materials SKECHUP MODELS TABLE SKETCHUP MODEL BATHROOM delta 3d printer humor tips 3d printed music instrument 3d printing filament 3d systems VRAY TUTORIAL BASIC car cnc mill comic design eyewear heated build platform multi color multitool nylon paper print bed sla stratasys upgrade 3d printing in cement 3d scanner Switzerland adafruit australia cad controller cool things to 3d print extruder germany indiegogo large models medical applications of 3d printing mold repair review syringe video 2016 CES HDRI NASA OpenSCAD SKETCHUP MODELS FURNISHING ACCESSORIES SKETCHUP MODELS OFFICE FURNITURE TEXTURE aircraft android concrete dlp drone family filament extruder food formlabs furniture game google glass house household items hybrid i3 india keyboard laser optics pellet prosthetic prototype prusa raspberry pi science sls stereolithography tool uv 3d printing waste water web app 3d printer crime 3d printing on battery power BACKGROUNDS Future NEWSLETTER VISMAT VRAY SKETCHUP aluminum animal app aquaponics bluetooth camera casting ceramic clay desktop production disney diy science ecology energy generation engraver eye glasses fantasy figure hydroponics italy jet engine mcor metal 3d printing ninjaflex pcb milling pet pets pick and place plant plastic welding plywood polishing problemsolving rail recycling replacement part satellite school sf smoothing speakers sweden test 2014 3d printed airplane 3d printed car part 3d printed food 3d printed gun 3d printed uav 3d printer review 4d printing 5 axis Autodesk CUT OUT PEOPLE MIT Marlin Netherlands PS TUTORIAL SKETCHUP 3D MODEL VEGETATION Spain UK USA abs archery asia automation bed leveling bicycle biohacking bottle calibration chocolate composite control unit copyright creative commons dc motor digital fabrication disabled dremel enclosure fdm filament fire foldable form 1 garden ge history hype industrial injection molding insects jewelry laser cutter laser cutting law lens linux mach3 metal casting military modular multi materials open source hardware outdoor pen play-doh polyurethane problem repstrap router sand scara seemecnc selective laser sintering servo shapeways slicer solder speed support material thingiverse toy tv ultrasonic v-slot visualization weapon web web interface welding wifi windows wireless 3d printing wood wood frame 3d printer 2d to 3d 3d copy 3d drawing pen 3d print platform 3d print quality 3d printed sensors 3d printed vehicles 3d printer desk 3d printer stand 3d printer table 3d printing 3d printing wood 3d printshow 3d startup 6 axis Czech Republic ESA France GRAPHIC DESIGN ELEMENTS Intel Galileo Korea MDF Objet PETG Printrbot SKETCHUP 3D LIQUID SKETCHUP MODEL BABY - GUYS FURNITURE SKETCHUP MODEL LOFT & APARTMENT SKETCHUP TUTORIAL Shapeoko Singapore Slovenia TED VR VRAY TUTORIAL EXTERIOR VRAY TUTORIAL INTERIOR abs juice acetone acrylic africa air airwolf3d all-in-one apple armour arrow automotive batteries bedroom bioprinter blacksmith blender blind bronze brook drumm business buying home cardboard ccc cell cerberus children china closed loop cloud cody wilson community company tour cooling cosplay cubesat customized daily use data delta demonstration denmark drill dual extruder e3d economy environment etching fashion filabot filaflex firmware flexible ford friction welding fumes gartner gears general glass glue google graphene harvard hdpe heat chamber hungary ikea industrial 3d printer intellectual property ip rights japan k8200 kai parthy kinect laser sintering lcd led lego leveling library linear actuator liquid london lost pla casting lulzbot magnets make makerfarm prusa making money with 3d printing manufacturing map market metal filament metal hot end mexico microscope microsoft mix mobile 3d print control mobile factory model quality modification molecule moon nanoparticles nature news nfc ordsolutions parametric paste patent pcb photography plasma cutter plotter poland polyjet portable 3d printer portugal powder 3d printing presentation printhead process prosumer pump pvc pipes quadcopter reddit repetier replicator reprappro retro rings robo 3d rocket rostock max rubber rubber band russia sea security self assembly setup sharing slic3r smartphone solar south africa spaceX star trek steel stepper students surface tablet taiwan ted talks temperature testing textile titanium type a machines uav ultimaker 2 university usb user interface velleman virus wanhao wasp wasp 3d printer watch wind generator wire workspace xyzprinting